Effects of an 11-nm DMSA-coated iron nanoparticle on the gene expression profile of two human cell lines, THP-1 and HepG2
نویسندگان
چکیده
BACKGROUND Iron nanoparticles (FeNPs) have attracted increasing attention over the past two decades owing to their promising application as biomedical agents. However, to ensure safe application, their potential nanotoxicity should be carefully and thoroughly evaluated. Studies on the effects of FeNPs on cells at the transcriptomic level will be helpful for identifying any potential nanotoxicity of FeNPs and providing valuable mechanistic insights into various FeNPs-induced nanotoxicities. RESULTS This study investigated the effects of an 11-nm dimercaptosuccinic acid-coated magnetite nanoparticle on the gene expression profiles of two human cell lines, THP-1 and HepG2. It was found that the expression of hundreds of genes was significantly changed by a 24-h treatment with the nanoparticles at two doses, 50 μg/mL and 100 μg/mL, in the two cell types. By identifying the differentially expressed genes and annotating their functions, this study characterized the general and cell-specific effects of the nanoparticles on two cell types at the gene, biological process and pathway levels. At these doses, the overall effects of the nanoparticle on the THP-1 cells were the induction of various responses and repression of protein translation, but in the HepG2 cells, the main effects were the promotion of cell metabolism, growth and mobility. In combination with a previous study, this study also characterized the common genes, biological processes and pathways affected by the nanoparticle in two human and mouse cell lines and identified Id3 as a nanotoxicity biomarker of the nanoparticle. CONCLUSION The studied FeNPs exerted significant effects on the gene expression profiles of human cells. These effects were highly dependent on the innate biological functions of cells, i.e., the cell types. However, cells can also show some cell type-independent effects such as repression of Id3 expression. Id3 can be used as a nanotoxicity biomarker for iron nanoparticles.
منابع مشابه
Research of an Iron Oxide Nanoparticles and Potential Application
The iron oxide nanoparticles (FeNPs) are widely used in biomedicine for good biocompatibility. To promote its safe application, any potential nanotoxicity should be thoroughly and carefully investigated. This paper systematically summarizes our lab’s research on the nanotoxicity of iron oxide nanoparticles coated with dimercaptosuccinic acid (DMSA), including the effects of FeNPs on viability, ...
متن کاملDetection of Her2 Levels in Cancerous Cells Based on Iron Oxide Nanoparticles
In this study, we synthesized Herceptin conjugated magnetic nanoparticles (HMNs) as an alternative probe to discover the levels of HER2 (Human epidermal growth factor receptor-2) in the surface of cells. These nanoparticles can be used by magnetic resonance imaging (MRI) (non-invasive methods) for screening the patients with HER2 positive or negative tumors. Dextran coated iron oxide nanopartic...
متن کاملDetection of Her2 Levels in Cancerous Cells Based on Iron Oxide Nanoparticles
In this study, we synthesized Herceptin conjugated magnetic nanoparticles (HMNs) as an alternative probe to discover the levels of HER2 (Human epidermal growth factor receptor-2) in the surface of cells. These nanoparticles can be used by magnetic resonance imaging (MRI) (non-invasive methods) for screening the patients with HER2 positive or negative tumors. Dextran coated iron oxide nanopartic...
متن کاملDown-regulation of HSP40 gene family following OCT4B1 suppression in human tumor cell lines
Objective(s): The OCT4B1, as one of OCT4 variants, is expressed in cancer cell lines and tissues more than other variants and plays an important role in apoptosis and stress (heat shock protein) pathways. The present study was designed to determine the effects of OCT4B1 silencing on expressional profile of HSP40 gene family expression in three different human tumor cell lines. Materials and Met...
متن کاملThe effect of different concentrations of iron oxide nanoparticles on the expression of p53 gene in human amniotic membrane-derived mesenchymal stem cells
Superparamagnetic iron oxide nanoparticles (SPIONs) have made extensive advances in nanotechnology. The unique properties of these particles have expanded their application in various fields, including medicine. One of these applications is non-invasive analysis for cell tracking. However, the possibility of toxicity in cells is reported by these nanoparticles. Due to the fact that cellular dam...
متن کامل